Distantly Supervised Named Entity Recognition with Self-Adaptive Label Correction
نویسندگان
چکیده
Named entity recognition has achieved remarkable success on benchmarks with high-quality manual annotations. Such annotations are labor-intensive and time-consuming, thus unavailable in real-world scenarios. An emerging interest is to generate low-cost but noisy labels via distant supervision, hence label learning algorithms demand. In this paper, a unified self-adaptive framework termed Self-Adaptive Label cOrrection (SALO) proposed. SALO adaptively performs correction process, both an implicit explicit manners, turning into correct ones, benefiting model training. The experimental results four benchmark datasets demonstrated the superiority of over state-of-the-art distantly supervised methods. Moreover, better version by ensembling several semantic matching methods was built. Experiments were carried out consistent improvements observed, validating generalization proposed SALO.
منابع مشابه
Supervised Named Entity Recognition for Clinical Data
Clinical Named Entity Recognition is a part of Task 1b, organised by CLEF eHealth organisation in 2015. The aim is to automatically identify clinically relevant entities in medical text in French. A supervised learning approach has been used for training the tagger. For the purpose of training, Conditional Random Fields(CRF) has been used. An extensive set of features was used for training. Pre...
متن کاملRobust Multilingual Named Entity Recognition with Shallow Semi-Supervised Features
We present a multilingual Named Entity Recognition approach based on a robust and general set of features across languages and datasets. Our system combines shallow local information with clustering semi-supervised features induced on large amounts of unlabeled text. Understanding via empirical experimentation how to effectively combine various types of clustering features allows us to seamless...
متن کاملSemi-supervised Bio-named Entity Recognition with Word-Codebook Learning
We describe a novel semi-supervised method called WordCodebook Learning (WCL), and apply it to the task of bionamed entity recognition (bioNER). Typical bioNER systems can be seen as tasks of assigning labels to words in bioliterature text. To improve supervised tagging, WCL learns a class of word-level feature embeddings to capture word semantic meanings or word label patterns from a large unl...
متن کاملDomain adaptive bootstrapping for named entity recognition
Bootstrapping is the process of improving the performance of a trained classifier by iteratively adding data that is labeled by the classifier itself to the training set, and retraining the classifier. It is often used in situations where labeled training data is scarce but unlabeled data is abundant. In this paper, we consider the problem of domain adaptation: the situation where training data...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12157659